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Abstract In this work, we discuss the uncertainty in
estimating the human health risk due to exposure to air
pollution, including personal and population average
exposure error, epidemiological designs, and methods
of analysis. Different epidemiological models may lead
to very different conclusions for the same set of data.
Thus, evaluation of the assumptions made and sensi-
tivity analysis are necessary. Short-term health impact
indicators may be calculated using concentration–
response (C-R) functions. We discuss different meth-
ods to combine C-R function estimates from a given
locale and time period with the larger body of evidence
from other locales and periods and with the literature.
A shrunken method is recommended to combine C-R
function estimates from multiple locales. This shrunken
estimate includes information from the overall and
the local estimates, and thus, it characterizes the esti-
mated excess of risk due to heterogeneity between the
different locations.

Keywords Uncertainty analysis · Spatial statistics ·
Exposure assessment · Risk assessment · Time series ·
Case-crossover analysis · Local spatial analysis ·
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Introduction

This manuscript is part of a workshop on methodolo-
gies for environmental public health tracking of air
pollution effects. This workshop was sponsored and
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North Carolina State University, Raleigh, USA
e-mail: fuentes@stat.ncsu.edu

organized by the Health Effects Institute, the US Cen-
ters for Disease Prevention and Control (CDC), and
the US Environmental Protection Agency (EPA). The
workshop was held in Baltimore, MD, on January 15
and 16, 2008. The overall goal of the workshop was
to produce a set of recommendations for analyzing
linked air quality and health data to estimate and track
over time air pollution health impact indicators, for use
at the US state and sub-state levels. This manuscript
focuses on air pollution acute effects, presenting the
methodology for health impact assessment at the local
levels, and it is intended for a broad audience.

In this manuscript, we discuss relevant statistical
issues in establishing the impact on human health of
exposure to ozone, particulate matter, and other pol-
lutants at the state and local levels. A typical analysis
consists of two stages: (1) exposure assessment and (2)
epidemiological analysis relating exposure to the health
outcome.

We start with the exposure assessment in Section
“Exposure assessment”. In this section, we discuss dif-
ferent approaches to estimate pollution exposure in-
cluding the use of monitoring data, spatial statistical
interpolation methods, air quality numerical models,
satellite data, and probabilistic exposure models. We
discuss advantages and limitations of each one of the
approaches, and we end this section with a discussion
of uncertainty in the exposure assessment. Exposure as-
sessment is an important activity for health risk assess-
ment to air pollution, to investigate what is the health
impact of a given exposure on a population, by applying
previously derived health effect model estimates to a
population with a given exposure distribution.

In the Sections “Estimation of health effects” and
“Estimation of the C-R function”, we discuss health
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outcome analyses. In the Section “Estimation of health
effects”, we introduce two complementary statistical
methods to study the association between air pollution
exposure and a health outcome: a time-series-based
approach and a case-crossover design, which are equiv-
alent approaches under some assumptions. We present
uncertainty analysis for both frameworks.

In the Section “Estimation of the C-R function”, we
introduce different approaches for local concentration–
response function analysis: local regression analysis, ad-
justed estimates using external C-R functions, shrunken
approaches, and full Bayesian methods. We discuss un-
certainty and sensitivity analysis for the C-R function.
In the Section “Uncertainty in the C-R function”, we
present a case study.

Exposure assessment

Epidemiologic studies typically assess the health im-
pacts of particulate matter and ozone using ambient
concentrations measured at a centrally located moni-
toring site, or at several sites located across the study
area, to reflect exposures for their study population.
The ability of these ambient concentrations to reflect
actual pollution exposures for the study population
generally depends on several factors, including the spa-
tial distribution of the ambient air pollutants, the time–
activity patterns, and housing characteristics for the
study community.

One method to link personal exposure to ambient
levels, and thus to the association between air pollution
and the health endpoints, is to model exposure by sim-
ulating the movement of individuals through time and
space and estimate their exposure to a given pollutant
in indoor, outdoor, and vehicular microenvironments.
The exposure model developed by EPA to estimate
human population exposure to particulate matter is
called stochastic human exposure and dose simulation
(SHEDS-PM) (Burke 2005) and the stochastic model
for ozone is called air pollutants exposure (APEX).
They are both probabilistic models designed to account
for the numerous sources of variability that affect peo-
ple’s exposures, including human activity. Daily activity
patterns for individuals in a study area, an input to
APEX and SHEDS, are obtained from detailed diaries
that are compiled in the Consolidated Human Activity
Database (CHAD; McCurdy et al. 2000; EPA 2002).
Although SHEDS and APEX can be valuable tools,
human exposure simulation models introduce their
own uncertainties, and such models need to be further
evaluated and their uncertainties characterized.

Most of the previous analyses of particulate matter
(PM) health effects have been conducted in urban ar-
eas; very little is known about rural PM-related health
effects. One reason for this is that monitoring data
are sparse across space and time for rural areas. For
ozone, we lack information for the winter months, since
most monitoring stations only operate from May to
September. Thus, EPA in collaboration with the CDC,
and three state public health agencies (New York,
Maine, and Wisconsin) are working together on the
Public Health Air Surveillance Evaluation (PHASE)
project to identify different spatial–temporal interpo-
lation tools that can be used to generate daily surrogate
measures of exposure to ambient air pollution and
relate those measure to available public health data.
As part of the PHASE project, EPA is using statistical
techniques (e.g., kriging, see Cressie 1993) to interpo-
late monitoring data at locations and times for which we
do not have observations. EPA is also supplementing
monitoring data with satellite data and atmospheric
deterministic models (e.g., Community Multiscale Air
Quality (CMAQ) models). These models run by EPA
provide hourly air pollution concentrations and fluxes
at regular grids in the USA. CMAQ uses as inputs me-
teorological data, emissions data, and boundary values
of air pollution (Binkowski and Roselle 2003; Byun
and Schere 2006). These air quality numerical models
provide areal pollution estimates, rather than spatial
point estimates. Thus, we have a change of support
problem (see, e.g., Gotway and Young 2002), since
monitoring data and numerical models do not have the
same spatial resolution. EPA in the PHASE project has
adopted a hierarchical Bayesian (HB) spatial–temporal
model to fuse monitoring data with CMAQ, using
sound statistical principles (McMillan et al. 2007). The
Bayesian approach provides a natural framework for
combining data (see Fuentes and Raftery 2005), and it
relays on prior distributions for different parameters in
the statistical model. The prior distributions could be
space-dependent and also substance-dependent. Con-
sequently, this framework needs to be used with cau-
tion when applied to different geographic domains and
different air pollutants. The potential bias in the pollu-
tion estimates as a result of the change of support prob-
lem is not taken into account in the PHASE project
due to the computational burden. For a description of
the problems that arise when combining two methods
with different support, we refer to Gotway and Young
(2002). This might not cause a significant impact on
the estimated exposure when the air quality numerical
models are run at a high spatial resolution (i.e., grid
cells of 4 km × 4 km). However, when CMAQ is run at
a coarse resolution (e.g., grid cells of 36 km × 36 km),



Air Qual Atmos Health (2009) 2:47–55 49

the change of support problem could result in biased
exposure estimates.

The final product of the HB approach adopted in the
PHASE project is a joint distribution of the concen-
trations of pollution across space and time. Since this
distribution is likely to be non-normal, just the mean of
the distribution at each location and time is not neces-
sarily a good summary. Alternative summaries should
be considered, such as different percentiles. Ideally, one
would like to work with simulated values from the dis-
tribution rather than just a summary of the distribution,
because that way we could characterize the uncertainty
in the exposure when conducting the risk assessment.
This will be discussed in the Section “Estimation of the
C-R function”.

Uncertainty in the exposure assessment

The use of statistical models (e.g., kriging), air quality
numerical models (e.g., CMAQ), or exposure models
(APEX, SHEDS) to help in characterizing exposure to
ozone and particulate matter adds more sources of un-
certainty to the human health risk assessment estimates
because these models have their own uncertainties.
However, the air quality models can be a valuable and
powerful tool to extend the concentration–response
(C-R) function analysis to the national level and also
for addressing gaps if not enough monitoring data are
available. The air quality models, based on the dynam-
ics and mechanics of atmospheric processes, typically
provide information at higher temporal and spatial res-
olution than data from observational networks. Errors
and biases in these deterministic models are inevitable
due to simplified or neglected physical processes or
mathematical approximations used in the physical para-
meterization. The exposure models can be considered
a powerful tool for characterizing the exposures of the
study population by taking into account human activi-
ties. The different sources of error and uncertainties in
the exposure models (SHEDS, APEX) result from vari-
ability not modeled or modeled incorrectly, erroneous
or uncertain inputs, errors in coding, simplifications of
physical, chemical, and biological processes to form the
conceptual models, and flaws in the conceptual model.
In particular, the uncertainty in the estimation of am-
bient air quality will be propagated by APEX and
SHEDS. The APEX and SHEDS output could be also
very sensitive to the uncertainty in the prior distribu-
tions used in the microenvironmental models. Evalu-
ation of these air quality and exposure models would
help to quantify and characterize the different sources
of errors in the models.

Reich et al. (2009) compare mortality risk estimates
obtained under different exposures metrics, in par-
ticular using SHEDS versus just monitoring data to
characterize fine particulate matter (PM) exposure in
El Fresno, CA, USA for years 2001 and 2002. The
estimated risk parameter was not very different when
using SHEDS versus monitoring data, but the 95%
confidence intervals for the estimated risk in El Fresno
were widened by using the exposure model (SHEDS),
since SHEDS helps to characterize the heterogeneity in
the population under consideration. Choi et al. (2009)
show how using CMAQ data combined with moni-
toring data to characterize fine PM exposure helps to
reduce the amount of uncertainty in the estimated risk
of mortality due to fine PM exposure. Their study shows
that the health effects in some areas were not significant
when using only monitoring data, but then appeared
to be significant when adding CMAQ as an additional
source of information to characterize the exposure.

In some cases, presenting results from a small num-
ber of model scenarios would provide an adequate
uncertainty analysis for the air quality and exposure
models (e.g., when insufficient information is avail-
able). In most situations, probabilistic methods would
be necessary to characterize properly at least some un-
certainties and also to communicate clearly the overall
uncertainties. Although a full Bayesian analysis that in-
corporates all sources of information may be desirable
in principle, in practice, it will be necessary to make
strategic choices about which sources of uncertainty
justify such treatment and which sources are better han-
dled through less formal means, such as consideration
of how model outputs might change as some of the
inputs vary through a range of plausible values.

These different sources of uncertainty in the esti-
mated exposure due to the use of different interpola-
tion techniques need to be taken into account when
estimating the C-R function. When using a Bayesian
approach to estimate exposure (e.g., HB-PHASE ap-
proach), the uncertainty in the exposure to some degree
is characterized by the joint distribution of the exposure
values. To the extent that is computationally feasible,
the risk assessment should be conducted using the joint
distribution of the exposure values rather than just
means from that distribution.

Sensitivity analysis

Sensitivity analysis should be conducted to understand
the impact of the uncertainty in the exposure estimates
on the health risk assessment, since it could result in
over- or underestimation of the risk.
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Sensitivity calculations help to understand the sensi-
tivity of results to some model assumptions. In particu-
lar, it is important to examine sensitivity to the structure
of the spatial smoothing (kriging), and how it is imple-
mented, by comparing different covariance functions in
the spatial smoothing techniques fitted using a plug-
in method, empirical Bayes, or fully Bayesian (e.g.,
Gryparis et al. 2009). Sensitivity analysis should be
conducted when using CMAQ/APEX/SHEDS models
to understand how results might be dependent on some
of the inputs and parameterizations of these models.

Estimation of health effects

Time-series analysis is a commonly used technique
for assessing the association between counts of health
events over time and exposure to ambient air pollution.
The case-crossover design is an alternative method that
uses cases only and compares exposures just prior to
the event times to exposures at comparable control, or
referent times, in order to assess the effect of short-term
exposure on the risk of a rare event (see Janes et al.
2004). Each technique has advantages and disadvan-
tages (see Fung et al. 2003). The PHASE team has
selected case-crossover rather than time-series analysis
due to the shorter learning curve (easier to use), and
because within one analysis, the method can accommo-
date many time series. It is important to keep in
mind that the case-crossover design is equivalent to a
Poisson regression analysis except that confounding is
controlled for by design (matching) instead of in the
regression model. Restricting referents to the same
day of week and season as the index time can control
for these confounding effects by design. Accurate es-
timates can be achieved with both methods. However,
both methods require some decisions to be made by the
researcher during the course of the analysis.

In modeling time series of adverse health outcomes
and air pollution exposure, it is important to model
the strong temporal trends present in the data due to
seasonality, influenza, weather, and calendar events.
Recently, rigorous statistical time-series modeling ap-
proaches have been used to better control for these
potential confounders. Furthermore, sophisticated an-
alytical techniques have been introduced to adjust for
seasonal trends in the data, culminating in the intro-
duction of the generalized additive model (GAM).
Although temporal trends can be explicitly included
in the model, nonparametric local smoothing methods
(LOESS) based on the GAM were widely used to take

into account such trends in the analysis. Dominici et al.
(2002b) suggested another approach using parametric
natural cubic splines in the GAM model instead of the
LOESS. One of the main limitations of this type of
time-series modeling approach is that it is necessary to
choose the time span in the LOESS smoothing process,
or the degrees of freedom of the cubic splines, and the
results can be very sensitive to how that is done (e.g.,
Peng et al. 2006).

The case-crossover design compares exposures at the
time of the event (i.e., hospital admission) with one or
more periods when the event is not triggered. Cases
serve as their own controls. The excess risk is then
evaluated using a pair-matched design and conditional
logistic regression analysis. Proper selection of refer-
ents is crucial with air pollution exposures, because of
the seasonality and long-term time trend. Careful ref-
erent selection is important to control for time-varying
confounders and to ensure that the distribution of ex-
posure is constant across referent times, which is the
main assumption of this method. The referent strategy
is important for a more basic reason: the estimating
equations are biased when referents are not chosen a
priori and are functions of the observed event times.
This type of bias is called overlap bias. Different strate-
gies, such as full stratum bidirectional referent selection
(choosing referents both before and after the index
time; Navidi 1998), have been proposed to reduce bias.
But, they do not control for confounding by design.

Sensitivity analysis

For any study of the association between air pollu-
tion and adverse health outcomes, conducted based
on a Poisson time-series or a case-crossover design, is
important to verify the model assumptions and to eval-
uate the model performance. Thus, there is a need to
assess the performance of the different variations of
time-series and case-crossover procedures to establish
associations between air pollution and human health.
Sensitivity analysis of the time-series procedure to the
statistical representation of the confounding effects
needs to be conducted since this could lead to signif-
icant bias in the estimation of the health effects. In
particular, the sensitivity of the results with respect
to the co-pollutants introduced in the model, the time
span used in the LOESS smoothing process, and to the
degrees of freedom when choosing cubic splines need to
be determined. For the case-crossover studies using bi-
directional control selection, sensitivity analysis regard-
ing the choice of time interval needs to be conducted.
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Estimation of the C-R function

Short-term health impact indicators can be calculated
using concentration–response (C-R) functions. A C-R
function summarizes the associations between various
measures of air pollution and the health outcome. Local
C-R functions can be obtained from case-crossover or
time-series analysis using local information. However,
since there is usually limited data for each location,
pooling information across similar regions may im-
prove local C-R estimates. A local analysis ignores in-
formation from other locations/periods and could result
in a less accurate estimate of the C-R local function.
There is a precedent for use of methods that combine
a local C-R function analysis with C-R functions from
other locations and times, for example, Post et al.
(2001), Tertre et al. (2005), Dominici et al. (2002a),
and Fuentes et al. (2006). We discuss in this section
these different approaches to estimate local C-R func-
tions. We start with simple local regression approaches,
then we introduce external C-R functions, and the next
approach would be the use of shrunken estimates (em-
pirical Bayes) and finally the use of Full Bayesian
approaches. The degree of statistical training and the
computational challenges increase as we move along
this list from the local regression to the Bayesian ap-
proaches. While Bayesian approaches are recom-
mended because they better characterize different
sources of uncertainty, depending on the resources, one
would have to make a decision about what method
to use. The purpose of this section is to highlight the
advantages and limitations of each approach.

The C-R function assumed in most epidemiologi-
cal studies on health effects of PM, ozone, and other
ambient pollutants is exponential: y = Beβx, where x
is the exposure level, y is the incidence of mortality
(or other adverse health outcome) at level x, β is the
coefficient of the environmental stressor, and B is the
incidence at x = 0 when there is no exposure). In these
epidemiological models at the local or state level, we
assume that the counts of the health outcome come
from a Poisson process. Thus, we have,

ln
(
E

(
yc

t

)) = βc Pc
t + ηc Xc

t (1)

where E(yc
t ) represents the mean counts of the health

outcome in the subdomain c on day t, Pc
t are the daily

levels of the environmental stressors at location c and
day t, βc is the parameter to be estimated, which is the
coefficient multiplying the environmental stressor. The
log relative risk (RR) parameter is usually defined as
βc ∗ 103. Xt

c is the vector of the confounding factors

(e.g., seasonality, weather variables, influenza, and cal-
endar events) and ηc is the corresponding vector of
coefficients. The confounder term in this model is often
replaced with a smooth function of the covariates (e.g.,
splines).

Local estimates Local estimates of βc can be obtained
at each location c separately, using a regression tech-
nique applied to model 1. Local regression would allow
for more local covariate control. However, the evidence
across different locations is ignored.

Adjusted estimates (external C-R function) Local esti-
mates (i.e., from multiple locations) can be combined
using a random effects model, by regressing the local
estimates against potential effect modifiers that vary
across locations. This is done to gain precision in esti-
mating the C-R function and to understand variability.
The model assumptions are:

β̂c ∼ N
(
μc, S2

W,c

)
,

μc ∼ N
(
αZ c, σ 2

B

)
.

If we ignore the potential variability within location
c of the effect modifiers αZ c, we have

β̂c ∼ N
(
αZ c, S2

W,c + σ 2
B

)

β̂c is the estimated effect of P in location c, S2
W,c is the

estimated within-location c variance, and σ 2
B, is the be-

tween locations variance. β̂c and S2
W,c are obtained from

the local regression analysis. The between locations
variance, σ 2

B, is usually estimated with the maximum
likelihood estimate, using an iterative approach.

The random-effects-pooled estimate is a weighted
average of the location-specific β̂c. The weights involve
both the sampling error (the within-location variability)
and the estimate of σ 2

B, the variance of the underlying
distribution of μc (the between-location variability).

Shrunken estimates An alternative to the local esti-
mates and to the overall (pooled random effects) es-
timate is obtained using the local shrunken estimates.
The model assumptions are:

β̂c ∼ N
(
μc, S2

W,c

)

μc ∼ N
(
β̃, σ 2

B

)
(2)

where S2
W,c is the estimated within-location variance

and obtained in a first-stage local analysis as the
squared standard error (SE) from the local regression
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model, β̂c is the maximum likelihood (ML) estimate
from the local regression. β̃ is the overall pooled esti-
mate, and σ 2

B is the between-location variance (treated
as known, and obtained in a first-stage analysis using a
maximum-likelihood approach).

Then, we can obtain the following conditional distri-
bution:

μc|β̂c, β̃, S2
W,c, σ

2
B

∼ N

(
S2

W,c

S2
W,c + σ 2

B

β̃ + σ 2
B

S2
W,c + σ 2

B

β̂c,
S2

W,cσ
2
B

S2
W,c + σ 2

B

)

,

this is called the posterior probability distribution of
μc. The mean of this posterior distribution is also
called the shrunken estimate of βc. The variance of the

shrunken estimate is
S2

W,cσ
2
B

S2
W,c+σ 2

B
, which is clearly smaller

than S2
W,c, the variance of our local regression estimate,

because by introducing the spatial information, we are
able to reduce the variability of our risk estimate. This
shrunken estimate includes information from the over-
all and the local estimates, and thus it characterizes
the estimated excess of risk due to heterogeneity be-
tween the different locations. In the presence of het-
erogeneity, location-specific estimates vary regarding
the overall effect estimate for two reasons: (a) the true
heterogeneity in the estimates and (b) additional sto-
chastic error. A location-specific estimate reflects the
first source of variation but not the second one. The use
of shrunken estimates allows reduction of the stochastic
variability of the local estimates. This shrunken method
is an empirical Bayesian method because β̂c, β̃, and the
within- and between-variance parameters, are treated
as known, and therefore, the uncertainty about these
parameters is not taken into account in the analysis.
This could lead to underestimation of the variance
associated to the log relative risk parameter.

Effect modifiers (external C-R function), αZ c, could
be also easily introduced in this empirical Bayes frame-
work, by replacing in our model β̃ with αZ c.

Full Bayesian approach A full Bayesian approach is
an extension of the shrunken method to characterize
the uncertainty in the pooled estimate, β̃, and the
within location estimate, β̂c, when obtaining the final
estimate of the effect of the environmental stressor at
a given location. Thus, rather than treating β̃ and σ 2

B
as known, they are modeled as random effects that are
jointly estimated at all locations. This would just a one
way random effects model which is easy to fit.

A Bayesian multi-stage framework would allow the
characterization of the spatial dependency structure of
the relative risk parameter, by treating βc as a spatial
stochastic process (Fuentes et al. 2006). Lee and

Shaddick (2007) smoothed the risk across time. How-
ever, this spatial/temporal analysis is usually highly
dimensional, and the computational demand of a full
Bayesian approach can be extremely laborious. The
computation is often simplified by using empirical
Bayes alternatives, such as the shrunken estimate.

Uncertainty in the C-R function

Concentration–response functions, estimated by epi-
demiological models, play a crucial role in the esti-
mation of the risk associated with different pollutants.
Uncertainty in the C-R function may impact conclu-
sions. As described in the previous section, some of the
formal approaches for uncertainty analysis in epidemi-
ological models include Bayesian analysis and Monte
Carlo analysis.

To deal with epidemiological model uncertainty, it is
possible to compare alternative models, but not com-
bine them, weight predictions of alternative models
(e.g., probability trees), and/or the use of meta-models
that degenerate into alternative models. For compari-
son of different models to estimate the C-R function,
we recommend to use statistical information criteria
that have traditionally played an important role in
model selection. The basic principle of model selection
using information criteria is to select statistical models
that simplify the description of the data and model.
Specifically, information methods emphasize minimiz-
ing the amount of information required to express
the data and the model. This results in the selection
of models that are the most parsimonious or efficient
representations of observed phenomena. Some of the
commonly used information criteria are: Akaike infor-
mation criterion (AIC, Akaike 1973, 1978), Bayesian
information criterion (BIC, also known as the Schwarz
criterion, Schwarz 1978), risk inflation criterion (RIC,
Foster and George 1994), and deviance information
criterion (DIC), which is a generalization of the AIC
and BIC. The DIC is particularly useful in Bayesian
model selection problems where the posterior distrib-
utions of the models have been obtained by Markov
chain Monte Carlo simulation. These criteria allow to
describe the level of uncertainty due to model selection
and can be used to combine inferences by averaging
over a wider class of models (meta-analysis) using read-
ily available summary statistics from standard model
fitting programs.

There are also uncertainties associated with the es-
timate of the environmental stressor and reliability of
the limited ambient monitoring data in reflecting actual
exposures (as discussed in the “Exposure assessment”
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section). Because the uncertainties propagate to the
epidemiological model, a full characterization of un-
certainties in the exposure assessment is needed. The
ability to quantify and propagate uncertainty is still an
area under development. Using a hierarchical frame-
work would help quantify uncertainties; the fitting can
be done stage-by-stage, taking the interim posteriors
from one stage as the priors for the next. Within each
stage, a fully Bayesian approach can be used to get the
interim posterior distributions. As the implementation
is based on the sequential version of the Bayes theorem,
the corresponding model uncertainties will be captured
at the final stage of the hierarchical model. The HB-
PHASE framework to obtain exposures fits naturally
within this multi-stage approach, by treating the ex-
posure distributions obtained from the HB approach
as priors in the next stage, in which we estimate the
RR. However, this can be computationally demanding.
Uncertainty analysis has certainly developed further
and faster than our ability to use the results in decision-
making. Effective uncertainty communication requires
a high level of interaction with the relevant decision
makers to ensure that they have the necessary informa-
tion about the nature and sources of uncertainty and
their consequences.

Sensitivity analysis

Sensitivity analyses need to be conducted to under-
stand how results vary with the assumed shape of the
concentration–response function and other model as-
sumptions, since this could lead to biased results, in
particular, to the role of confounders, demographic
factors, co-pollutants, the structure of the cessation
lag, and sensitivity of the premature mortality estimate
(or other endpoints) to the presence of a potential
threshold.

Case study

The National Morbidity, Mortality, and Air Pollution
Study (NMMAPS) data are publicly available, and they
contain mortality, weather, and air pollution data for
108 cities across the USA for years 1987–2000. The
NMMAPS data are available through the internet-
based health and air pollution surveillance system
(iHAPSS). iHAPSS is developed and maintained by
the Department of Biostatistics at the Johns Hopkins
Bloomberg School of Public Health.

Using the NMMAPS data, we estimate the associa-
tion between particulate matter, PM10 (particles with a
diameter of 10 μm or less), and death due to cardiovas-
cular diseases. In this application we work with 11 cities
located in the north eastern US, and we compare the
four different methods proposed in this paper to obtain
local estimates: the local method, the adjusted method,
the shrunken approach, and the fully Bayesian. The
health end point is cardiovascular mortality. We also
present pooled estimates for the overall effect using
each one of the four methods, obtained as weighted
average of the local estimates:

P̂A =
∑

c
β̂c

S2
c∑

c
1
S2

c

,

with associated SE

SE
(
P̂A

) =
√

1
∑

c
1
S2

c

,

where β̂c is the local estimate for each city and S2
c is the

corresponding variance.

Table 1 Table showing how
the four methods presented
in this paper change the
resulting estimates of the
local effect β̂c

The reported estimates are
the health effect times 103,
103β̂c, corresponding to
percent increase in mortality
per increase in 10 units
of PM10

Local Adjusted Shrunken Full Bayesian

β̂c SE β̂c SE β̂c SE β̂c SE

Syracuse 3.18 1.56 0.72 1.60 0.82 0.31 1.41 0.98
Boston 2.50 1.27 0.72 1.31 0.83 0.31 1.35 0.88
Providence 2.03 1.23 0.72 1.27 0.80 0.31 1.21 0.83
Jersey City 1.25 0.75 0.72 0.81 0.80 0.29 1.03 0.60
Baltimore 0.40 0.62 0.72 0.69 0.66 0.28 0.55 0.52
Newark 0.23 1.05 0.72 1.09 0.68 0.30 0.56 0.72
Philadelphia 0.09 0.66 0.72 0.73 0.61 0.28 0.38 0.56
Washington 0.01 1.53 0.72 1.56 0.69 0.31 0.58 0.87
Kingston −1.20 2.19 0.72 2.21 0.68 0.31 0.45 1.02
Arlington −1.60 5.96 0.72 5.97 0.72 0.31 0.71 1.17
Richmond −2.24 2.74 0.72 2.76 0.68 0.31 0.42 1.09
Pooled estimate 0.72 0.32 0.72 0.31 0.72 0.32 0.79 0.50
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First, we introduce our Poisson regression model
(NMMAPS model, Peng et al. 2004):

Yt ∼ Poisson(μt)

log μt = γ1 DOWt + γ2 AgeCat+γ3 s(tempt, df =6)

+ γ4 s(tempt,1−3, df = 6)

+ γ5 s(dewptt, df = 3)

+ γ6 s(dewptt,1−3, df = 3)

+ γ7 s(t, df = 7x # years)

+ γ8 s(t, df = 0.15 x 7x # years)

+ βPMt

Var(Yt) = φμt (3)

where Yt is the number of cardiovascular deaths on
day t, φ, β, and γi for i = 1, 8 are unknown parameters,
DOWt is the day of week for day t, AgeCat is an age
indicator. The age categories used are ≥ 75, 65–74, and
< 65 years old. tempt is the average temperature on
day t, tempt,1−3 is the running mean of the temperature
for the previous 3 days, PMt is the PM10 level for day
t. The variables dewptt and dewptt,1−3 are current day
and running mean of dewpoint temperature. Each of
the temperature and dewpoint temperature variables,
as well as time, are related to mortality via a smooth
function s(). While there are many choices for smooth
functions, the smooth function used in this study is
natural splines. The smoothness of the functions of s()
are controlled through the degrees of freedom (df )
given to each function. The degrees of freedom are
fixed at 6 df for the temperature functions and 3 df
for the dewpoint temperature functions. The degrees of
freedom for time are dependent on the number of years
of data being used and are adjusted for the presence
of missing data. The smooth function of time has 7 df
per year, and there is also an addition smooth function
per age category that has 0.15 × 7 df per year. These
smooth functions of time are important to control for
seasonal factors, long-term mortality trends, and pos-
sible age specific trends. The df in this application are
the same as in NMMAPS. We define β̂c as the effect
for city c with associated variance S2

W,c. We can think of
S2

W,c as the within-city variation.
In Table 1, we presented the estimated risk of mor-

tality and its corresponding SE using each one of the
four proposed methods. The local analysis corresponds
to a Poisson regression at each city. It is clear that
all three methods that pool information from the local
level (adjusted, shrunken, full Bayesian) are able to
refine the local estimates (less variance). In this dataset,

we do not have external information for each city, so
the “adjusted” estimates are the same for each city
though the variability is different.

Table 1 illustrates the main conclusions from this
paper, how the shrunken estimate borrows information
from the overall and local estimates, and helps then
to reduce stochastic variability of the local estimates.
Therefore, some cities that did not have a significant
health effect using only local analysis appear to have a
significant effect when using the shrunken method. A
fully Bayesian approach characterizes also uncertainty
in β̃ and σ 2

B, so it gives larger SE than the empirical
Bayesian approach (shrunken method).
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