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The ability of six humic acids (HAs) to form pseudomicellar structures in aqueous solution was evaluated by

®ve techniques: size exclusion chromatography; pyrene ¯uorescence enhancement; the pyrene I1/I3 ratio; the

cloud point of dilute HA solutions; and the ¯uorescence anisotropy of HAs. Soil HAs were found to aggregate

most easily, both on microscopic and macroscopic scales. The formation of amphiphilic structures was chie¯y

related to HA±solvent interactions: highly solvated HAs aggregated poorly, while a lignite derived material

underwent intermolecular, rather than intramolecular, rearrangements. A newly discovered algal HA was found

to have minimal aggregative properties.

Introduction

Humic substances are the breakdown products of plant and
animal matter in environmental matrices, especially soil. The
major components of these materialsÐhumic acid (HA), fulvic
acid (FA), and huminÐare de®ned on the basis of their
solubilities in aqueous solution. HA, the subject of the present
study, is soluble in solutions of pHw2, while FA is soluble at
all pHs and humin is entirely insoluble. HA is comprised of a
suite of polydisperse carbonaceous polymers with molecular
weights ranging to tens of kDa.1 Both molecular size and
functional group characteristics are variable, depending on the
origin of the material and the environmental factors implicated
in its formation. Considerable diversity also exists within a
single HA sample. Generally, however, HAs have a signi®cant
aromatic content (30±60% of C) and an abundance of carboxy
(15±25% of C) and hydroxy groups.2 Their behavior in aqueous
solution has been studied extensively3±6 and it has been noted
that they have signi®cant surface activity.

Based on this observation, the detergent model of HA was
developed7±10 and has been found to account for much of its
behavior in aqueous solution. According to this model, HA
polymers aggregate spontaneously in water, forming micelle-
like structures comparable to those formed by synthetic
surfactants. The term ``pseudomicelle'' is often used to describe
these bodies, especially in dilute solution, since they are
composed of various HA polymer fragments and are likely to
be more structurally diverse than customary micelles.11,12 It is
thought that the formation of humic pseudomicelles in aqueous
solution can proceed by both intramolecular and intermole-
cular mechanisms.13±15 In the former, a single polymer chain
arranges itself in a manner that exposes its hydrophilic parts
(e.g., carboxy groups) to the aqueous surroundings, while
isolating its hydrophobic portion in the center of the structure.
This type of ``aggregation'' is not characterized by a critical
micelle concentration (CMC). It has been shown that the
formation of humic pseudomicelles is promoted by the
presence of metal ions, especially multivalent ones.16

The secondary structure of aqueous HAs can be studied by a
variety of methods. Non-intrusive procedures are preferred,
since the arrangements of the polymers in water are both
changeable and fragile, precluding techniques that interfere
with the integrity of the system. Studies of this kind are of
interest because of the ubiquitous nature of humic substances
in the environment, and their implication in the transport of
pollutants through soil.17±21

In view of the variations among HAs from different origins,
it is important to compare their behavior in aqueous solution,
in order to understand how their environmental interactions
may differ. The present communication offers a comparison of
6 HAs, studied by 5 different methods.

Experimental

Humic acids and reagents

Latahco silt loam humic acid (LSLHA) was obtained from the
top 30 cm of a Latahco silt loam soil (Argiaquic Xeric
Argialbolls), maintained as pasture for at least 20 years. The
soil, which contained in addition to silt, 4.15% organic C,
15.9% clay, 12.1% sand, and 0.39% total N (w/w), was air dried
and crushed to pass a 2.0 mm sieve. HA extraction was carried
out according to the standard procedure published by the
International Humic Substances Society.22 Ritzville soil humic
acid (RSHA) was isolated in the same way from a Ritzville silt
loam, obtained from Paci®c Northwest National Laboratories
(Richland, WA). This soil contained (w/w) 43.3% sand, 43.6%
silt, 12.3% clay, and 0.7% organic C. Pilayella littoralis humic
acid (PLVHA) was obtained from the Barnett Institute
(Northeastern University, Boston, MA), where it was isolated
from a brown alga by a procedure described by Ghabbour et
al.23 The other HAs used were reference materials obtained
from the International Humic Substances Society (St. Paul,
MN) and are described in the product literature.

Various characteristics of the 6 HAs used in this study have
been discussed previously.3,10±12,15 Relevant information on
these materials, in addition to the isolation procedures reported
above, includes:

LSLHA: this is a soil HA, considered to be comprised of
¯exible polymers containing numerous saturated hydrocarbon
links.

LHA: this HA is found in association with lignite deposits
and is mined at various sites in North America. It is a
condensed aromatic material with little molecular ¯exibility.

SRHA: this is an aquatic HA with a relatively high
functional group density. In this respect it resembles a large
fulvic acid.

SHHA: this IHSS standard has a high aliphatic and
heteroaliphatic content.

RSHA: this material was obtained from a sandy Ritzville soil
(0.7% organic carbon). Little is known about its structure,
although it appears to have a relatively high aromatic content.
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PLVHA: this new algal HA was obtained from Pilayella
littoralis by the Davies group at Northeastern University,
Boston. The typical elemental composition was:23 42.6% C,
5.2% H, 5.2% N, 0.8% S, 38.5% O, and 6.1% ash. IR, UV, and
PMR spectra showed the material to be similar to compost
HA.

Pyrene (98%) was obtained from Sigma and puri®ed by
recrystallization from absolute ethanol and sublimation onto a
cold ®nger. MgCl2 (J.T. Baker) and aqueous ammonia (Fisher)
were used as received. Tris buffer [tris(hydroxymethyl)amino-
methane] was obtained from Sigma and prepared as recom-
mended by Cameron et al.24 All water used was treated with a
0.22 mm Millipore system to 18 MO cm resistivity.

Procedures and instrumentation

HA solutions were prepared by placing the appropriate
amount of solid in ca. 5 mL of water, dropwise adding conc.
aqueous ammonia until dissolution was complete (one drop
was generally suf®cient), and then diluting with water as
needed. The solution was sonicated at ca. 40 ³C until no more
ammonia odor could be detected. The ®nal pH of the solutions
was in the range 6.5±7.0. For pyrene containing HA solutions,
a 1.061027 M aqueous pyrene solution was used as the
diluent. The addition of ammonia had no effect on the humic
solutes other than expediting their dissolution.

Fluorescence intensity measurements were taken with a
Hitachi F-4500 ¯uorescence spectrophotometer. Data reported
as a function of Mg2z concentration were obtained by adding
successive microliter volumes of a 0.1 M MgCl2 solution to
3 mL of HA solution. Dilution effects were thus negligible.
Fluorescence intensities were measured exactly 10 min after
each salt addition. Pyrene ¯uorescence was excited at 240 nm
(where HAs are only weakly excited) and measured at 372 nm.

SEC separations were carried out on a SigmaChrom GFC-
1300 gel ®ltration column (13.25 mL; 30067.5 mm), supplied
by Supelco (Bellefonte, PA). This contains a crosslinked
polysaccharide packing which can tolerate eluent pH values in
the range 3±12. Cameron et al.24 noted that used with a Tris
buffer, this type of stationary phase minimizes gel±solute
interactions other than size exclusion. A Waters (Milford, MA)
510 HPLC pump operating at a back pressure of v250 psi, and
a Waters 411 absorbance detector set at 280 nm were used. The
eluent was a 1 M, pH 9, Tris buffer, and the ¯ow rate was
0.5 mL min21. HA solutions of 50 ppm in Tris were introduced
with a 10 mL injection loop. Before each run, the column was
eluted with Tris buffer for ca. 1 h, and after completion of all
runs it was ¯ushed and stored with 20% ethanol. The void
volume of the system was ca. 3 mL.

Cloud point (CP) determinations were made visually on 50
or 100 ppm HA solutions. The ionic strength requirements
were determined by heating the solution to 70 ³C (above the CP
in all cases) and maintaining this temperature. The warm
solution was titrated with 0.1 M MgCl2 (with temperature
equilibration after each addition) until clouding was ®rst
observed. The Mg2z concentration at this point was taken as
the minimum needed. The solution was then cooled, with
sonication, until the clouding disappeared, and was reheated at
a rate of 1±2 deg min21 until it reappeared. The temperature at
this point was recorded as the CP.

The pyrene I1/I3 ratios were measured with a SLM Aminco
8100 ¯uorescence spectrophotometer. The values were deter-
mined by taking the HA/pyrene emission spectrum at 240 nm
excitation, subtracting the HA-blank emission at this excitation
(which was minimal), and taking the ratio of the emission peaks
at 372 nm (I1) and 383 nm (I3). For measurements involving
Mg2z, successive aliquots of a MgCl2 solution in the microliter
range (causing negligible dilution) were added. Measurements
were taken 10 min after each addition.

For the measurement of the HA ¯uorescence anisotropy, the

T-optics arrangement of the SLM Aminco ¯uorimeter was
employed. The instrument has two emission channels, 180³
apart, each comprising a Glan-Taylor polarizer. By adjusting
one to pass I|| and the other to pass I^ (for an explanation of the
process, vide infra), the anisotropy could be determined in a
single measurement. The reported values, recorded at 340 nm
excitation and 400 nm emission, were an average of 40
determinations.

Results and discussion

HPSEC

The size exclusion chromatograms of the 6 HAs under
investigation are shown in Fig. 1. The variable small peak
that emerged at 3±4 mL of eluent in ®ve of the samples
represents the large components that were totally excluded by
the gel ®ltration medium. This corresponded to a globular
protein exclusion limit of 1.36106 Da, and a blue dextran limit
of w2.06106 Da. No unequivocal HA size assignments can be
made on the basis of these compounds, but the totally excluded
humic polymers should be expected to have molecular weights
in the 100z kDa range. The main peak in all chromatograms
represents a continuous distribution of molecular sizes. The
absence of multiple peaks within this distribution indicates that
no interactions other than size exclusion were likely to play a
role in the chromatographic process. It can be seen that while
the molecular sizes of the six HAs covered similar ranges,
de®nite differences existed in their distributions. As would be
expected for an aquatic HA, SRHA lacked the large
components present in the other samples. Also, its distribution
was notably narrow, possibly suggesting a degree of size
selectivity for SRHA dissolution in river water. The chroma-
tograms of LSLHA and SHHA are clearly similar, while that of
RSHA shows a greater abundance of large components. This is
not only indicated by the size of the totally excluded peak, but
also by the relatively high level of the region immediately

Fig. 1 Size exclusion chromatograms of HAs.
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following this peak, which represents the large retained
components of the sample. A similar situation was found for
the algal material, PLVHA, which also shows a broad
distribution. In contrast, LHA had a modest totally excluded
peak and a relatively small complement of large polymers.

Fluorescence enhancement

It has been shown in previous studies11,13,16 that the
¯uorescence intensity of a pyrene probe present in an aqueous
HA solution is in many cases intensi®ed when metal ions are
added. This phenomenon was ascribed to the enhancement of
pseudomicellar domains in HA by the cations. The sequestra-
tion of pyrene in these structures is thought to lead to a
reduction in its quenching encounters with hydrophilic HA
moieties. It has been proposed that the degree to which a HA
responds to the addition of a metal in this manner is (at least
partially) a function of its molecular ¯exibility. Fig. 2 shows the
change of pyrene ¯uorescence with the concentration of added
Mg2z for solutions of the HAs under investigation. It is clear
that LSLHA and RSHA produced strong ¯uorescence
enhancement, while SHHA, LHA, and SRHA did so rather
weakly. In the context of the micellar model, this means that
the ®rst two HAs formed pseudomicelles most effectively upon
the addition of the cation, providing the most suitable
sequestration sites for pyrene. Interestingly, PLVHA produced
a decrease, rather than increase, in pyrene ¯uorescence when
Mg2z was added. This suggests that enhanced pseudomicelli-
zation did not take place in this case, but that the ¯uorophore
underwent increased exposure to Cl± ions (weak quenchers of
pyrene ¯uorescence). In the other HA solutions, the chloride
ions (being hydrophilic) were excluded from the humic
pseudomicelles. There is no evidence of a useful correlation
between the ¯uorescence enhancement phenomenon and the
molecular size distributions shown in Fig. 1.

I1/I3 ratio

The intensity ratio of the ®rst and the third vibronic peaks in
the emission spectrum of pyrene has been shown to constitute a
good measure of the polarity of the environment of the
molecule.25 The I1/I3 ratio is high in polar surroundings (e.g.,
1.8 in water) and low (0.9±1.3) in nonpolar solvents. The
parameter was employed in a previous HA/pyrene study, where
it was found to be useful, albeit of limited sensitivity.15 In the
present case, its variation with Mg2z concentration in 10 ppm
solutions of HA was determined (Fig. 3). Here, too, the range
over which the values changed was fairly small, but de®nite
trends could be observed in at least two cases. For pyrene in
LSLHA and RSHA solutions, I1/I3 decreased sharply as Mg2z

was added, indicating that the probe moved to less polar
surroundings. This is in keeping with the proposed sequestra-
tion mechanism, i.e. the formation of enhanced pseudomicellar
domains through interactions with the cation. In the SHHA

solution, an initial decrease in I1/I3 was observed, but the ratio
increased again when more Mg2z was added. The reason for
the rise at the higher cation concentrations is not immediately
clear, but suggests that pseudomicelle formation reached a
plateau at a Mg2z concentration of ca. 161025 M. Addition
beyond this concentration exposed the ¯uorophore to a
microenvironment of higher ionic strength. The solutions of
PLVHA, SRHA, and LHA produced no discernible trends,
suggesting that cation induced pseudomicelle formation/
enhancement was less effective in these HAs. For the case of
LHA this has been noted before11 and was ascribed to the
condensed aromatic nature of this material. This was
considered to limit its ¯exibility and hence its ability to
undergo effective intramolecular rearrangements upon the
addition of cations. This is also likely to be the case for SRHA,
being a relatively small, aquatic material. PLVHA, the newly
discovered HA, appears to have relatively little tendency to
undergo cation induced rearrangements, leading to the
formation of enhanced hydrophobic domains. It should be
noted that the I1/I3 data are in good agreement with the results
of the ¯uorescence enhancement study.

Cloud points

The clouding phenomenon of amphiphilic solutes in water is
best known for nonionic surfactants, especially those with
polyoxyethylene (POE) head groups.26 It refers to a sponta-
neous phase separations in micellar solutions of these
compounds when the temperature is raised to a value known
as the cloud point (CP; a characteristic parameter of the
surfactant). Clouding is due to the decrease of the dielectric
constant of water with temperature, which diminishes its H-
bonding with the POE chains, causing their dehydration. In
keeping with this, ionic surfactants do not cloud. It has been
shown13 that HA solutions also undergo clouding, provided the
ionic strength of the solution is high enough. This requirement
is ascribed to the fact that HAs are, to a variable degree,
anionic in aqueous solution and will not dehydrate unless the
charges are suf®ciently neutralized.

Table 1 shows the CPs and relevant parameters of the HAs
under investigation. Attempts were made to use 50 ppm HA
concentrations in all cases, but with SHHA and SRHA this
proved insuf®cient to produce visible clouding. LSLHA
required the lowest cation concentration and clouded at the
lowest temperature. This indicates that this HA most easily
eliminated water from its hydrated parts, and also suggests that
its chains possessed the necessary ¯exibility to contract and
form hydrophobic structures. With LHA and RSHA, both the

Fig. 2 Variation of the ¯uorescence intensity of 1.061027 M pyrene
with Mg2z concentration in 10 ppm HA solutions.

Fig. 3 Variation of the I1/I3 ratio of the pyrene (1.061027 M) emission
with Mg2z concentration in 10 ppm HA solutions. LSLHA (&);
RSHA (Y); SRHA (&); SHHA ($); PLVHA ($); LHA (p).
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minimum Mg2z concentration and the CP increased, while the
CP was elevated still further in PLVHA. This indicates that
these HAs underwent hydrophobic aggregation with increasing
dif®culty, which may be ascribed to less molecular ¯exibility
and/or stronger H-bonding. SHHA and SRHA required higher
sample concentrations, and commensurately higher Mg2z

concentrations, and clouded at relatively high temperatures.
Even with the HA concentrations normalized to 50 ppm,
however, the ionic strength requirements were high in these
cases. This is especially true for SRHA, which may be
attributed to the relatively small size (Fig. 1) and high water
compatibility of this aquatic HA.

Fluorescence anisotropy

In this technique, both the exciting radiation and the emission
used in the ¯uorescence measurement are passed through
polarizers.27 The static ¯uorescence anisotropy, r, of a
¯uorophore is de®ned in eqn. (1):

r � IE ÿ I\

IE � 2I\
(1)

where I, is the emission intensity measured with the emission
polarizer aligned parallel with the excitation polarizer, and I^ is
the intensity obtained with the emission polarizer turned 90³.
The value of r, which can attain a maximum of 0.4, is a measure
of the rotational diffusion of the ¯uorophore in solution.
Species that diffuse slowly, either due to their molecular size or
to solvent interactions (e.g., H-bonding) generally have higher
anisotropies than those diffusing quickly.

In aqueous solution at room temperature, dilute HA
solutions have anisotropies close to zero, revealing little
about differences in their mobilities. In the present case,
therefore, the HAs were dissolved in glycerol, which, owing to
its high viscosity, gives rise to more substantial anisotropy
values. Glycerol interactions with HA are clearly different from
those of water, but meaningful relative mobility data can still
be obtained in this solvent. Fig. 4 shows the anisotropy values

of dilute HA solutions in glycerol. It can be seen that SRHA is
the least mobile, and PLVHA the most. The data do not a
priori reveal whether the mobility differences shown were due
to the sizes of the HAs, their H-bonding to the solvent, or a
combination of these. However, when taken together with the
information in Fig. 1, which shows that PLVHA was among
the largest of the HAs and LSLHA and SHHA were similar in
size distribution, it is reasonable to surmise that solvent
interactions were preeminent in determining the rotational
diffusion of these solutes. In view of the known hydrophilic
nature of SRHA, it is understandable that this HA interacted
strongly with an H-bonding solvent such as glycerol. The other
HAs were solvated in decreasing order of anisotropy as shown
in Fig. 4.

Conclusions

Conclusions drawn from the measurements discussed above
are by necessity tentative, since the results are without
exception open to interpretation. It has been noted that the
¯uorescence enhancement and I1/I3 results are in good
agreement, indicating that LSLHA and RSHA form pseudo-
micelles easily under the in¯uence of cations in solution.
SHHA, LHA and SRHA do so to a lesser degree, while
PLVHA does not. The CP behavior suggests that LSLHA also
aggregates most easily on a macroscopic scale, while its
anisotropy indicates that it is not as thoroughly solvated (at
least by glycerol) as some of the other HAs. Cautious extension
of this observation to other H-bonding media suggests that the
behavior of LSLHA in water is related to its lack of strong
solvent interactions. The high CP and high anisotropy of
SHHA indicate that this HA is well solvated. LHA has a fairly
low CP, showing that macroscopic aggregation (the formation
of particles that scatter visible light) proceeds more easily than
pseudomicellization. This could mean that association is
largely intermolecular in this case, which ®ts the known
condensed aromatic character of LHA. The ®ndings on SRHA
are most unequivocal among those for the HAs studied: low
¯uorescence enhancement, low I1/I3, high CP, and high
anisotropy all indicate that this aquatic HA is well solvated
and has little tendency to aggregateÐboth in the pseudomi-
cellar and the macroscopic sense. An interesting case is
presented by PLVHA, which, being a recently discovered
material, has not been extensively studied. The SEC data show
a broad size distribution, and both ¯uorescence enhancement
and I1/I3 could mean that minimal pseudomicelle formation
takes place. The small anisotropy value suggests relatively low
solvation, while the high CP indicates the opposite. This
discrepancy may in this instance be related to the different
solvents used for the two measurements.
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